‘항생제 내성 예측 AI(인공지능)’가 개발됐다.
아주대의료원 의료정보학교실 박래웅 교수팀(김청수 대학원생·감염내과 최영화 교수, 이화여대 약학대학 이정연 교수)은 상급종합병원 275만 명의 공통데이터모델(CDM) 데이터베이스를 활용해 AI 기반의 ‘경험적 항생제’ 내성 예측 모형을 만들었다.
중증 감염병 환자가 입원할 경우, 정확한 항생제 처방을 위해 처방 전 항생제 내성 여부를 확인해야 하나, 처방을 미룰 수 없는 경우 일단 경험적으로 가장 적합한 처방, 즉 경험적 항생제를 시행한다.
이번 예측 모형은 입원 환자 중 병원성 요로감염 의심 환자를 대상으로 ▲환자 기저 특성(인구학적 특성·진단 기록·약물 처방력·검사 및 처치력 등) ▲타 기관 전원 기록 ▲항생제 감수성 경향(antibiogram) 등 다양한 정보를 활용했다.
이번 연구결과 8가지 항생제 감수성 패널 결과를 예측하는 이번 모형의 성능이 기존의 다른 선행연구 결과보다 더 우수한 결과를 보였다.
항생제 내성의 원인 중 하나는 ‘부적절하게 투여된 항생제’이다.
이는 ▲불필요한 투여 ▲부적절한 항생제(경험적 항생제 포함) 선택 ▲용법·용량 오류 ▲투여 시간 지연 등의 경우이다.
항생제 내성 문제는 계속 지속될 경우, 오는 2050년이면 전 세계적으로 매년 약 1,000만 명이 사망할 수 있다고 예측될 정도이다.
교수팀은 “올바른 경험적 항생제 선택은 불필요한 범위의 항생제 사용과 내성 확산을 막을 수 있다.”라고 설명했다.
박래웅 교수는 “이번 연구는 감염질환의 특성에 맞는 주요 대규모 의료 데이터를 확보해 실제로 활용 가능한 임상의사 결정 지원 시스템 모형을 개발했다는 데 의의가 있다.”라며, “향후 진료 현장에서 개인별 맞춤형 경험적 항생제 선택을 실현하는 데 기여하길 바란다.”라고 밝혔다.
이어 “이번 예측 모형은 임상에서 활용성을 높이기 위해 웹 기반 애플리케이션형태로도 개발했다.”라고 덧붙였다.
<예측 모델(앱) 결과 화면(일부)>
예측 결과 PPT(Piperacillin-tazobactam) 항생제(비감수성 확률 9%)가 최적의 결과로 나옴.
- 공통데이터모델(Common Data Model; CDM)
: 각 의료기관들이 보유한 다른 구조의 의료 데이터에 적용 가능한 동일한 구조와 규격의 데이터 모델.
이번 연구결과는 11월 국제항균제학회지(International Journal of Antimicrobial Agents, IF 10.8) ‘Translation of Machine Learning–Based Prediction Algorithms to Personalized Empiric Antibiotic Selections: A Population-Based Cohort Study(개인화된 경험적 항생제 선택을 위한 머신러닝 기반 예측 모형 개발)’란 제목으로 게재됐다.
한편 이번 연구는 보건복지부 감염병의료안전강화기술개발사업 지원으로 수행했다.
[메디컬월드뉴스 김영신 기자]
다른 곳에 퍼가실 때는 아래 고유 링크 주소를 출처로 사용해주세요.
http://medicalworldnews.co.kr/news/view.php?idx=1510958707